BWT \& FM-index

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Burrows-Wheeler Transform

```
def rotations(t):
    """ Return list of rotations of input string t """
    tt = t*2
    return [ tt[i:i+len(t)] for i in xrange(0, len(t)) ]
def bwm(t):
    """ Return lexicographically sorted list of t's rotations "
    return sorted(rotations(t))
def bwtViaBwm(t):
    """ Given T, returns BWT(T) by way of the BWM """
    return ''.join(map(lambda x: x[-1], bwm(t)))
Make list of all rotations
    Sort them
    Take last column
```

```
>>> bwtViaBwm("Tomorrow_and_tomorrow_and_tomorrow$")
'w$wwdd
```

\qquad

``` nnoooaattTmmmrrerrrooo
``` \(\qquad\)
``` \(00{ }^{\prime}\)
>>> bwtViaBwm("It_was_the_best_of_times_it_was_the_worst_of_times$")
's$esttssffttteww_hhmmbootttt_ii__woeeaaressIi
```

\qquad

``` '
>>> bwtViaBwm('in_the_jingle_jangle_morning_Ill_come_following_you$')
'u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_'
```


Burrows-Wheeler Transform

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the sorted list of rotations of a version of this paper are shown, together with the final character of each rotation.

Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

BWM(T)

SA(T)

Sort order is the same whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

$$
B W T[i]= \begin{cases}T[S A[i]-1] & \text { if } S A[i]>0 \\ \$ & \text { if } S A[i]=0\end{cases}
$$

"BWT = characters just to the left of the suffixes in the suffix array"

```
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
aba aba$
b a $ a b a a
b a a b a $ a
    BWM(T)
```


SA(T)

Burrows-Wheeler Transform

How to reverse the BWT?

BWM has a key property called the LF Mapping...

Burrows-Wheeler Transform:T-ranking

Give each character in T a rank, equal to \# times the character occurred previously in T. Call this the T-ranking.

$\mathbf{a}_{0} \mathbf{b}_{0} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{1} \mathbf{a}_{3} \boldsymbol{\$}$

Now let's re-write the BWM including ranks...

Note: we do not actually write this information in the text / BWM, we Are simply including it here to help us track "which" occurrences of each character in the BWM correspond to the occurrences in the text.

Burrows-Wheeler Transform

Look at first and last columns, called F and L
And look at just the as
as occur in the same order in F and L. As we look down columns, in both cases we see: $\mathbf{a}_{3}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{0}$

Burrows-Wheeler Transform

Same with $\mathbf{b}_{\mathrm{s}}: \mathbf{b}_{1}, \mathbf{b}_{0}$

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Burrows-Wheeler Transform: LF Mapping

$\left.\begin{array}{cccccc} & F & & & L \\ \text { BWM with T-ranking: } & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} \\ \mathbf{b}_{1} & \mathbf{a}_{3} \\ \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} \\ \mathbf{b}_{1}\end{array}\right]$

LF Mapping: The $i^{\text {th }}$ occurrence of a character c in L and the $i^{\text {th }}$ occurrence of c in F correspond to the same occurrence in T

However we rank occurrences of c, ranks appear in the same order in F and L

Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Occurrences of c in F are sorted by right-context. Same for L !
Whatever ranking we give to characters in T, rank orders in F and L will match

Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

$$
\begin{array}{lllll}
F & & & & L \\
\mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} \\
\mathbf{b}_{1} & \mathbf{a}_{3} \\
\mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} \\
\mathbf{a}_{2} & \mathbf{b}_{1} \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} \\
\mathbf{a}_{0} & \mathbf{b}_{0} \\
\mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} \\
\mathbf{b}_{0} & \mathbf{a}_{1} \\
\mathbf{a}_{0} & \mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} \\
\mathbf{a}_{3} & \mathbf{\$} \\
\mathbf{b}_{1} & \mathbf{a}_{3} & \mathbf{\$} & \mathbf{a}_{0} & \mathbf{b}_{0} \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mathbf{b}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{1} & \mathbf{a}_{3} \\
\mathbf{\$} & \mathbf{a}_{0}
\end{array}
$$

We'd like a different ranking so that for a given character, ranks are in ascending order as we look down the F / L columns...

Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

F now has very simple structure: a $\mathbf{\$}$, a block of as with ascending ranks, a block of \mathbf{b} s with ascending ranks

Burrows-Wheeler Transform

$$
\begin{aligned}
& \text { F L } \\
& \text { \$ } \mathbf{a}_{0} \\
& a_{0} \quad b_{0} \\
& \mathbf{a}_{1} \quad \mathbf{b}_{1} \longleftarrow \text { Which BWM row begins with } \mathbf{b}_{1} \text { ? } \\
& \mathbf{a}_{2} \quad \mathbf{a}_{1} \quad \text { Skip row starting with } \boldsymbol{\$} \text { (1 row) } \\
& \mathbf{a}_{3} \quad \mathbf{\$} \quad \text { Skip rows starting with } \mathbf{a} \text { (4 rows) } \\
& b_{0} \quad \mathbf{a}_{2} \\
& \text { Skip row starting with } \mathbf{b}_{0} \text { (1 row) } \\
& \text { Answer: row } 6 \\
& \text { row } 6 \rightarrow \mathbf{b}_{1} \quad \mathbf{a}_{3}
\end{aligned}
$$

Burrows-Wheeler Transform

```
Say Thas 300 As,400 Cs, 250 Gs and 700 Ts and $ < A < C < G < T
Which BWM row (0-based) begins with G}\mp@subsup{\mathbf{G}}{100}{}\mathrm{ ? (Ranks are B-ranks.)
Skip row starting with $ (1 row)
Skip rows starting with A (300 rows)
Skip rows starting with C (400 rows)
Skip first }100\mathrm{ rows starting with G (100 rows)
Answer: row 1+300+400+100=row 801
```


Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T and moving left

Start in first row. F must have $\mathbf{\$} . L$ contains
character just prior to \$: an
ao: LF Mapping says this is same occurrence of a as first \mathbf{a} in F. Jump to row beginning with \mathbf{a}_{0}. L contains character just prior to \mathbf{a}_{0} : \mathbf{b}_{0}.

Repeat for \mathbf{b}_{0}, get \mathbf{a}_{2}
Repeat for \mathbf{a}_{2}, get \mathbf{a}_{1}
Repeat for \mathbf{a}_{1}, get \mathbf{b}_{1}

Repeat for \mathbf{b}_{1}, get \mathbf{a}_{3}
Repeat for \mathbf{a}_{3}, get $\mathbf{\$}$, done
Reverse of chars we visited $=\mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \boldsymbol{\$}=T$

Burrows-Wheeler Transform: reversing

Another way to visualize reversing $\operatorname{BWT}(T)$:

$$
T: \mathbf{a}_{3} \mathbf{b}_{1} \mathbf{a}_{1} \mathbf{a}_{2} \mathbf{b}_{0} \mathbf{a}_{0} \$
$$

Burrows-Wheeler Transform: reversing

```
>>> reverseBwt("w$wwdd__nnoooaattTmmmrrrrrrooo__ooo")
'Tomorrow_and_tomorrow_and_tomorrow$'
>>> reverseBwt("s$esttssfftteww_hhmmbootttt_ii__woeeaaressIi
```

\qquad

``` ")
'It_was_the_best_of_times_it_was_the_worst_of_times$'
>>> reverseBwt("u_gleeeengj_mlhl_nnnnt$nwj__lggIolo_iiiiarfcmylo_oo_")
'in_the_jingle_jangle_morning_Ill_come_following_you$'
```


Burrows-Wheeler Transform

We've seen how BWT is useful for compression:
Sorts characters by right-context, making a more compressible string
And how it's reversible:
Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxilliary data structures
"FM" supposedly stands for "Full-text Minute-space." (But inventors are named Ferragina and Manzini)

Core of index consists of F and L from BWM:

FM Index: querying

Though BWM is related to suffix array, we can't query it the same way

6	\$
5	a \$
2	a aba\$
3	aba\$
0	abaaba\$
4	b a \$
1	baaba\$

We don't have these columns; binary search isn't possible

FM Index: querying

Look for range of rows of $B W M(T)$ with P as prefix
Do this for P's shortest suffix, then extend to successively longer suffixes until range becomes empty or we've exhausted P

$$
P=\mathbf{a b a}
$$

FM Index: querying

We have rows beginning with \mathbf{a}, now we seek rows beginning with ba

$$
P=\mathbf{a b a}
$$

$$
P=\mathbf{a b a}
$$

FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

Now we have the rows with prefix aba

FM Index: querying

$$
\begin{aligned}
& P=\text { aba } \begin{array}{l}
\text { Now we have the same range, }[3,5) \text {, we would } \\
\text { have got from querying suffix array }
\end{array}
\end{aligned}
$$

FM Index: querying

When P does not occur in T, we will eventually fail to find the next character in L :

$$
\begin{aligned}
& P=\mathbf{b} \mathbf{b} \mathbf{a} \\
& F \quad L \\
& \text { \$ a lb a a lb } \mathbf{a}_{0} \\
& \mathbf{a}_{0} \$ \mathrm{a} \mathrm{~b} \text { a a } \mathbf{b}_{0} \\
& \mathbf{a}_{1} \text { a lb a \$ a } \mathbf{b}_{1} \\
& \mathbf{a}_{2} \mathrm{~b} \text { a } \$ \mathrm{a} \mathrm{~b} \mathbf{a}_{1} \\
& \mathbf{a}_{3} \mathrm{~b} \text { a a lb a } \$
\end{aligned}
$$

FM Index: querying

If we scan characters in the last column, that can be very slow, $O(m)$

$$
\begin{aligned}
& P=\mathbf{a b a} \\
& F \quad L \\
& \text { \$ a b a a lb } \mathbf{a}_{3} \\
& \mathbf{a}_{0} \$ \mathrm{a} \text { b a a } \mathbf{b}_{1} \\
& \mathbf{a}_{1} \mathrm{a} \text { ba } \$ \mathrm{a} \mathbf{b}_{0} \\
& \mathbf{a}_{2} \text { b a \$ a b } \mathbf{a}_{1} \\
& \mathbf{a}_{3} \mathrm{~b} \text { a a b a } \mathbf{\$} \\
& \mathbf{b}_{0} \text { a } \$ \mathrm{a} \text { b a } \mathbf{a}_{2} \\
& \mathbf{b}_{1} \text { a a lba\$ } \mathbf{a}_{0} \\
& \text { Scan, looking for } \mathbf{b}_{s}
\end{aligned}
$$

FM Index: lingering issues

(2) Storing ranks takes too much space
(1) Scanning for preceding character is slow

(3) Need way to find where matches occur in T :

FM Index: fast rank calculations

Is there an $\mathrm{O}(1)$ way to determine which \mathbf{b} s
precede the as in our range?

| F | | L |
| :---: | :--- | :--- | :--- |
| $\$$ | | |

$\operatorname{Occ}(c, k)=$ \# of of c in the first k characters of BWT(S), aka the LF mapping.

Tally - also referred to as $\operatorname{Occ}(\mathrm{c}, \mathrm{k})$

F	L	a	b
\$	a	1	0
a	b	1	1
a	b	1	2
a	a	2	2
a	\$	2	2
b	a	\% 3	2
b	a	4	2

$\mathrm{O}(1)$ time, but requires $m \times|\Sigma|$ integers

FM Index: fast rank calculations

Another idea: pre-calculate \# as, \mathbf{b} s in L up to some rows, e.g. every $5^{\text {th }}$ row. Call pre-calculated rows checkpoints.

To resolve a lookup for character c in non-checkpoint row, scan along L until we get to nearest checkpoint. Use tally at the checkpoint, adjusted for \# of cs we saw along the way.

FM Index: fast rank calculations

Assuming checkpoints are spaced $O(1)$ distance apart, lookups are $O(1)$

	Tally	
L	a	b
:	:	
a	482	432
b		
b		
a		
a		
a		
a		
b		
b		
b		
a		
a		
b		
b	488	439
a		
b		

FM Index: fast rank calculations

This can also be accomplished using bit-vector rank operations. We store one bit-vector for each character of Σ, placing a 1 where this character occurs and a 0 everywhere else:

To resolve the rank for a given character \mathbf{c} at a given index \mathbf{i}, we simply issue a rank(c,i) query. This is a practically-fast constant-time operation, but we need to keep around Σ bit-vectors, each of $o(m)$ bits.

FM Index: a few problems

Solved! At the expense of adding checkpoints $(O(m)$ integers) to index.
(1)

$F \quad L$	
\$ a lb a a lb \mathbf{a}_{0}	
	a_{0} \$ a b a a \mathbf{b}_{0}
	$\mathbf{a}_{1} \mathrm{a}$ lb a \$ a \mathbf{b}_{1}
	$\mathrm{a}_{2} \mathrm{lb}$ a \$ a b \mathbf{a}_{1}
	$\mathrm{a}_{3} \mathrm{~b}$ a a lb a \$
	${ }_{0}$ a \$ a lb a \mathbf{a}_{2}
	$\mathrm{b}_{1} \mathrm{a}$ a lba \$ \mathbf{a}_{3}

With checkpoints it's \mathbf{O} (1)
(2) Ranking takes too much space

With checkpoints, we greatly reduce \# integers needed for ranks
But it's still O(m) space - there's literature on how to improve this space bound

FM Index: a few problems

Not yet solved:
(3) Need a way to find where these occurrences are in T :

If suffix array were part of index, we could simply look up the offsets
\$ albaabo \mathbf{a}_{0} $\mathbf{a}_{0} \$ \mathrm{alb}$ a a \mathbf{b}_{0} $\mathbf{a}_{1} \mathrm{alb}$ a $\$$ a \mathbf{b}_{1} $\begin{array}{llll}\mathbf{a}_{2} & b & a & \$ \\ a_{3} & b & a_{1} \\ a_{1} & b & b l l l\end{array}$ $\mathbf{a}_{3} \mathrm{~b}$ alaba $\mathbf{\$}$ \mathbf{b}_{0} a $\$$ alb a \mathbf{a}_{2}

But SA requires m integers

FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

Lookup for row 4 succeeds - we kept that entry of SA
Lookup for row 3 fails - we discarded that entry of SA

FM Index: resolving offsets

But LF Mapping tells us that the a at the end of row 3 corresponds to...
...the a at the begining of row 2

And row 2 has a suffix array value $=2$
So row 3 has suffix array value $=3$ = (row 2's SA val) +1 (\# steps to row 2)
If saved SA values are $\mathrm{O}(1)$ positions apart in T, resolving offset is $\mathrm{O}(1)$ time

FM Index: problems solved

Solved!
 At the expense of adding some SA values $(O(m)$ integers) to index Call this the "SA sample"

(3) Need a way to find where these occurrences are in T :

With SA sample we can do this in $O(1)$ time per occurrence

FM Index: small memory footprint

Components of the FM Index:
First column (F): $\quad \sim|\Sigma|$ integers
Last column (L): $\quad m$ characters
SA sample: $\quad m \cdot a$ integers, where a is fraction of rows kept
Checkpoints: $\quad m \times|\Sigma| \cdot b$ integers, where b is fraction of rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), $T=$ human genome, $a=1 / 32, b=1 / 128$

First column (F): 16 bytes
Last column (L): $\quad 2$ bits * 3 billion chars $=750 \mathrm{MB}$
SA sample: $\quad 3$ billion chars * 4 bytes/char $/ 32=\sim 400 \mathrm{MB}$
Checkpoints: . 3 billion * 4 bytes/char * 4 char / $120=\sim 400 \mathrm{MB}$
Total $\sim 1.5 \mathrm{~GB}$

Computing BWT in O(n) time

- Easy $O\left(n^{2} \log n\right)$-time algorithm to compute the BWT (create and sort the BWT matrix explicitly).
- Several direct $O(n)$-time algorithms for BWT.

These are space efficient. (Bowtie e.g. uses [I])

- Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix array and BWT to output the BWT.
$\mathrm{O}(\mathrm{n})$-time and $\mathrm{O}(\mathrm{n})$-space, but the constants are large.
[1] Kärkkäinen, Juha. "Fast BWT in small space by blockwise suffix sorting." Theoretical Computer Science 387.3 (2007): 249-257.

Bonus material (not on exams ... but cool!)

Actual FM-Index Built on Compressed String

Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data structures with applications." Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

Data structure has "space occupancy that is a function of the entropy of the underlying data set"

Stores text $T[1, u]$ in $O\left(H_{k}(T)\right)+o(1)$ bits for $k \geq 0$ where $H_{k}(T)$ is the kith order empirical entropy of the text - sub-linear for a compressible string

Theorem 1 Let Z denote the output of the algorithm BW_RLX on input $T[1, u]$. The number of occurrences of a pattern $P[1, p]$ in $T[1, u]$ can be computed in $O(p)$ time on a RAM. The space occupancy is $|Z|+O\left(\frac{u}{\log u} \log \log u\right)$ bits in the worst case.

Theorem 2 A text $T[1, u]$ can be preprocessed in $O(u)$ time so that all the occ occurrences of a pattern $P[1, p]$ in T can be listed in $O\left(p+o c c \log ^{2} u\right)$ time on a RAM. The space occupancy is bounded by $5 H_{k}(T)+O\left(\frac{\log \log u}{\log u}\right)$ bits per input symbol in the worst case, for any fixed $k \geq 0$.

Theorem 3 A text $T[1, u]$ can be indexed so that all the occ occurrences of a pattern $P[1, p]$ in T can be listed in $O\left(p+o c c \log ^{\epsilon} u\right)$ time on a RAM. The space occupancy is $O\left(H_{k}(T)+\frac{\log \log u}{\log ^{8} u}\right)$ bits per input symbol in the worst case, for any fixed $k \geq 0$.

Compressing BWT Strings

Lots of possible compression schemes will benefit from preprocessing with BWT (since it tends to group runs of the same letters together).

One good scheme proposed by Ferragina \& Manzini:

Move-To-Front Coding

To encode a letter, use its index in the current list, and then move it to the front of the list.

$\underset{\begin{array}{l} \text { letters from the } \\ \text { allowed alphabet } \end{array}}{\text { Lill }}$	Σ	do\$oodwg
	\$dgow	1
	d\$gow	13
	od\$gw	132
	\$odgw	1321
	o\$dgw	13210
	o\$dgw	132102
	do\$gw	1321024
	wdo\$g	13210244

Benefits:

- Runs of the same letter will lead to runs of 0 s .
- Common letters get small numbers, while rare letters get big numbers.

Move-To-Front Decoding

To encode a letter, use its index in the current list, and then move it to the front of the list.

Σ			
List with all letters from the allowed alphabet	\$dgow	13210244	d
	d\$gow	± 3210244	do
	od\$gw	13210244	do\$
	\$odgw	13210244	do\$0
	-\$dgw	13210244	do\$00
	-\$dgw	13210244	do\$00g
	do\$gw	13210244	do\$00gw
	wdo\$g	13210244	do\$oogwg

Benefits:

- Runs of the same letter will lead to runs of 0 s .
- Common letters get small numbers, while rare letters get big numbers.

Computing Occ in Compressed String

Break BWT(S) into blocks of length L (we will decide on a value for L later):

BWT(S)

Assumes every run of 0 s is contained in a block [just for ease of explanation]. We will store some extra info for each block (and some groups of blocks) to compute Occ(c, p) quickly.

Extra Info to Compute Occ

$\mathrm{u}=$ compressed length
Choose $L=O(\log u)$
u / L blocks, each array is $|\Sigma| \log L$ space
$\stackrel{\underset{L}{L}}{\underset{L}{l}} \log L=\frac{u}{\log u} \log \log u$ total space.
block: store $|\Sigma|$-long array giving \# of occurrences of each character up thru and including this block since the end of the last super block.
block

superblock: store $|\Sigma|$-long array giving \# of occurrences of each character up thru and including this superblock
u / L^{2} superblocks, each array is $|\Sigma| \log u$ long $\Longrightarrow \frac{u}{(\log u)^{2}} \log u=\frac{u}{\log u}$ total space.

Extra Info to Compute Occ

$\mathrm{u}=$ compressed length
Choose $L=O(\log u)$
block

Occ(c, p) = \# of "c" up thru p:
sum value at last superblock, value at end of previous block, but then need to handle this block.

Store an array: $M\left[c, k, B Z_{i}, M T F_{i}\right]=\#$ of occurrences of c through the kth letter of a block of type $\left(B Z_{i}, M T F_{i}\right)$.
\# of possible bit patterns of length log(u)

Size: $\mathrm{O}(|\Sigma| \mathrm{L} 2 \mathrm{~L}|\Sigma|)=\mathrm{O}\left(\mathrm{L}^{\mathrm{L}^{\prime}}\right)=\mathrm{O}(\mathrm{uclog} \mathrm{u})$ for $\mathrm{c}<\mathrm{I}$ (since the string is compressed)

